
AN INTRODUCTION TO THE LATTICE OF TORSION CLASSES

HUGH THOMAS

Abstract. In this expository note, I present some of the key features of the

lattice of torsion classes of a finite-dimensional algebra, focussing in partic-

ular on its complete semidistributivity and consequences thereof. This is in-
tended to serve as an introduction to recent work by Barnard–Carroll–Zhu and

Demonet–Iyama–Reading–Reiten–Thomas.

Let A be a finite-dimensional algebra over a field k. We write mod A for the
category of finite-dimensional left A-modules. There is a class of subcategories of
modA which are called torsion classes. The torsion classes, ordered by inclusion,
form a poset which we denote torsA. This poset is in fact a lattice, and its lattice-
theoretic properties have recently been the focus of some attention, as in [Ja, GM,
BCZ, DI+, AP].

In this note I will present some of the interesting features of these lattices. The
proofs in this note are self-contained except for the final section, where we present
without proof an application of these ideas to the study of finite semidistributive
lattices from [RST]. This note is intended as a gentle introduction to the subject.
No results in this note are new. The presentation is, of course, novel in some
respects, and I hope that it is helpful as an introduction to the subject.

Let me now quickly summarize the contents of this note. Terms which are unde-
fined here will be introduced later where they logically fit. In addition to presenting
the easy explanation that torsA is a lattice, I will prove the result of Barnard, Car-
roll, and Zhu [BCZ] that the completely join irreducible elements of torsA are in
bijection with the bricks of A. I will show that torsA is completely semidistribu-
tive. I will not take the most direct route to this result, but rather spend some
time developing independently properties of torsA and corresponding properties of
semidistributive lattices, in an attempt to illuminate how semidistributivity gives
us a helpful perspective through which to view the combinatorics of torsA. I will
show that torsA is weakly atomic. We will then see how an algebra quotient induces
a lattice quotient map between the corresponding lattices of torsion classes, and
study this lattice quotient. In the final section, I will present (without proof) a
construction of finite semidistributive lattices developed in [RST], and inspired by
the study of lattices of torsion classes.

1. Definition of torsion classes

For the elementary material in this section and the two following, a further
reference is [ASS, Chapter VI].

A torsion class in modA is a subcategory T of modA which is

• closed under quotients (i.e., Y ∈ T and Y � Z implies Z ∈ T ).
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Figure 1. The AR quiver of the path algebra of the Kronecker quiver.

• closed under extensions (i.e., X,Z ∈ T and 0→ X → Y → Z → 0 implies
Y ∈ T .

I should clarify that for me a subcategory is always full, closed under direct sums,
direct summands, and isomorphisms. In other words, a subcategory of modA can
be specified as the direct sums of copies of some subset of the indecomposable
modules of A.

We write torsA for the set of torsion classes of modA, and we think of it as a
poset ordered by inclusion.

Example 1.1 (Type A2). Our quiver Q is 1 ← 2, and the algebra is the path
algebra A = kQ. The category modA has three indecomposable objects S1, P2, S2,
which I denote by their dimension vectors as [10], [11], and [01], respectively.

The torsion classes are as follows, where the angle brackets denote additive hull.

〈[10], [11], [01]〉

〈[11], [01]〉

〈[01]〉

0

〈[10]〉

Example 1.2 (Type An). For an example in type An, where Q is 1 ← · · · ← n,
see [Kr].

Example 1.3 (Kronecker quiver). Let k be algebraically closed. Let Q be the quiver

1 2 and let A = kQ.
The AR quiver is displayed in Figure 1, where I write [ab] for an indecomposable

module with dimension vector (a, b).
The tubes are indexed by points in P1(k) = k

⋃
{∞}; they each look the same.

The torsion classes consist of the additive hull of each of the following sets:

• any final part of the preinjective component,
• all preinjectives and a subset of the tubes,
• all preinjectives, all tubes, and a final part of the preprojectives,
• S1 = [10].
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0

〈[01]〉

〈[12], [01]〉

...

I

〈I,R−1〉 · · · 〈I,R0〉 · · · 〈I,R1〉

〈I,
⋃

x∈P1(k)Rx〉

· · · · · ·

· · · · · ·

· · ·· · · · · ·
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[12]

Boolean lattice

...

〈ind modA \ {[10], [21]}〉

〈ind modA \ {[10]}〉

modA

〈[10]〉

[10]

[01]

[10]

[21]

Figure 2. The lattice of torsion classes for A the path algebra of
the Kronecker quiver. The labels on the edges should be ignored
for now; they are the brick labelling γ̂ defined in Section 11.

An image of the lattice of torsion classes is displayed in Figure 2. There, I
denotes the preinjective component, and Rx denote the tube corresponding to x ∈
P1(k). I write ind modA for the set of indecomposable A-modules.

2. Specifying a torsion class

In general, how can we specify a torsion class? For C a subcategory of modA,
define T (C) to be the subcategory whose modules are filtered by quotients of objects
from C. That is to say M ∈ T (C) if and only if M admits a filtration 0 = M0 ⊂
M1 ⊂ · · · ⊂Mr = M with Mi/Mi−1 a quotient of an object of C for all i.

Proposition 2.1. For C an arbitrary subcategory, T (C) is the smallest torsion class
containing all the objects from C.

Proof. Suppose that M ∈ T (C), so that we have a filtration 0 = M0 ⊂ M1 ⊂
· · · ⊂ Mr = M with Mi/Mi−1 a quotient of an object of C for all i. Consider
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some quotient of M , say N = M/L. Then define Ni = (Mi + L)/L, which forms
a filtration of N . We see that Ni/Ni−1 is a quotient of Mi/Mi−1, and therefore a
quotient of an object of C. This shows that N ∈ T (C).

Suppose next that we have two modules M and N , both in T (C), and an exten-
sion

0→M → E → N → 0.

Now E has a two-step filtration 0 ⊂M ⊂ E, with E/M ' N , and we can refine
the two steps of the filtration to filtrations of M and N with subquotients being
quotients of C, since we know such filtrations exist. This shows that E ∈ T (C).
It follows that T (C) satisfies the two defining properties, and is therefore a torsion
class.
T (C) is the smallest torsion class containing C because any element of T (C) is an

iterated extension of quotients of C, which must be in any torsion class containing
C. �

We now consider a second way to specify a torsion class. For C a subcategory of
modA, define

⊥C = {X ∈ modA | Hom(X,Y ) = 0 for all Y ∈ C}.

Proposition 2.2. For C an arbitrary subcategory, ⊥C is a torsion class.

Proof. Let M ∈ ⊥C. Let N be a quotient of M . Since there are no non-zero
morphisms from M into any object of C, the same holds for N , so N ∈ ⊥C.

Suppose now that we have M and N in ⊥C, and an extension:

0→M → E → N → 0.

For any Y ∈ C, we have Hom(M,Y ) = 0 and Hom(N,Y ) = 0, and it follows from
the left exactness of the Hom functor that Hom(E, Y ) = 0 as well. We deduce that
E ∈ ⊥C.
⊥C satisfies the two defining conditions, and is therefore a torsion class. �

3. Torsion classes and torsion free classes

There is a dual notion to that of torsion class, namely that of torsion free class. A
torsion free class in modA is a subcategory closed under submodules and extensions.
We write tfA for the torsion free classes of A, and we think of it as a poset ordered
by inclusion.

As one should expect, in the setting of finite-dimensional algebras in which we
work, the theory of torsion free classes is completely parallel to the theory of torsion
classes. For C a subcategory of modA, define F (C) to tbe the subcategory of modA
consisting of all modules filtered by submodules of modules from C. Then F (C) is
the smallest torsion free class containing C. We can also define

C⊥ = {Y ∈ modA | Hom(X,Y ) = 0 for all X ∈ C}.

One easily checks that for any subcategory C, the subcategory C⊥ is a torsion free
class.

Proposition 3.1. Let T be a torsion class, and let X ∈ mod A. There is a
maximum submodule of X contained in T .
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Proof. If M and N are submodules of X, then we have a short exact sequence

0→M →M +N → N/(N ∩M)→ 0

If N and M are both in T , it follows that M + N is also. Because X is finite-
dimensional by assumption, it therefore has a maximum submodule contained in
T . �

We denote this maximum submodule by tTX.

Proposition 3.2. X/tTX lies in T ⊥.

Proof. Suppose there were a non-zero map f from some M ∈ T to X/tTX. Then
imf is a quotient of M , and therefore itself in T . The preimage of imf in X is then
an extension of imf by tTX, and is therefore also in T , contradicting the definition
of tTX. �

For any X in modA, we now have a short exact sequence:

(∗) 0→ tTX → X → X/tTX → 0.

with the lefthand term in T and the righthand term in T ⊥.

Proposition 3.3. For X ∈ modA, any short exact sequence of the form

0→ X ′ → X → X ′′ → 0

with X ′ in T and X ′′ ∈ T ⊥ is isomorphic to (∗).

Proof. Viewing X ′ as a submodule of X, it must be contained in tTX. If the
containment were strict, then X ′′ would not lie in T ⊥. The result follows. �

We can now prove the following theorem:

Theorem 3.1. The map T 7→ T ⊥ is an inclusion-reversing bijection from torsion
classes to torsion free classes. Its inverse is given by the map F 7→ ⊥F .

Proof. We already pointed out that T ⊥ is torsion free. It is easy to see that
⊥(T ⊥) ⊇ T . For the other inclusion, suppose X ∈ ⊥(T ⊥). Since X/tTX ∈ T ⊥,
there are no non-zero morphisms from X to X/tTX. But this must mean that
X/tTX = 0, so X = tTX, and X ∈ T .

Starting with a torsion free class F , we see just as easily that the composition
of the two maps in the other order is also the identity. They are therefore inverse
bijections. It is easy to see that they are order-reversing. �

From the previous theorem, together with Proposition 2.2, the following corollary
follows:

Corollary 3.1. The following pairs of subcategories are the same:

• {(T , T ⊥) | T ∈ torsA},
• {(⊥F ,F) | F ∈ tf A},
• {(X ,Y) | X = ⊥Y,Y = X⊥)}.
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4. Posets and lattices

A possible reference for basis material on lattices is [Gr].
A poset is a partially ordered set. In a poset, we say that x covers y if x is

greater than y and there is no element z such that x > z > y. In this case we write
xm y.

A lattice is a poset in which any two elements x and y have a unique least upper
bound (their “join”) denoted x ∨ y, and a unique minimal greatest lower bound
(their “meet”) denoted x ∧ y.

A complete lattice is a lattice such that any subset S of L has a unique least
upper bound, which we denote either

∨
x∈S x or

∨
S, and a unique greatest lower

bound, which we denote
∧

x∈S x or
∧
S.

A finite lattice is necessarily complete. The perspective taken in this note is that
the desirable infinite generalization of finite lattices are the complete lattices.

A complete lattice necessarily has a minimum element 0̂ (the meet of all the

elements of L) and similarly a maximum element 1̂.

5. Torsion classes form a complete lattice

The poset tors A clearly has a meet operation given by intersection, since the
intersection of two torsion classes again satisfies the defining properties of a torsion
class. The same is true for meets of arbitrary collections of torsion classes, for the
same reason.

To see the other lattice operation, there are three approaches which all work.
Since the left perpendicular/right perpendicular operations are order-reversing bi-
jections between torsion-classes and torsion-free classes, we have that∨

T ∈S
T = ⊥

( ∧
T ∈S
T ⊥
)
.

Since the
∧

on the righthand side exists (being given by intersection), so does the∨
on the lefthand side.
We can also define the join operation in tors A implicitly. Any poset with a

maximum element and a
∧

also has a
∨

, which can be defined as follows:∨
T ∈S
T =

∧
{Y∈tors A|Y⊇T ∀T ∈S}

Y

Finally, we can also describe the join explicitly using Proposition 2.1:

∨
T ∈S
T = T

( ⋃
T ∈S
T

)
We therefore have the following result:

Proposition 5.1. torsA is a complete lattice.

6. Join-irreducible elements in lattices

An element x of a lattice L is called join-irreducible if it cannot be written as the
join of two elements both strictly smaller than it, and it is also not the minimum
element of the lattice. Especially for finite lattices, the join-irreducible elements
can be viewed as “building blocks” of the lattice.
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Proposition 6.1. In a finite lattice L, any element is the join of the join-irreducible
elements below it.

Proof. Suppose x ∈ L were a minimal counter-example to the statement of the
proposition. If x were join-irreducible, it is obviously not a counter-example, so
suppose that it is not join-irreducible. We can therefore write x = y∨z with y, z < x.
By the assumption that x is a minimal counter-example, y and z can each be written
as a join of join-irreducible elements. Joining together these two expressions, we
get an expression for x as a join of join-irreducible elements, contradicting our
assumption that x was a counter-example. �

The situation for infinite lattices is more complicated. It can still be interesting
to consider join-irreducible elements defined as above. However, for our purposes,
the following definition is more important. We say that x ∈ L is completely join
irreducible if

∨
y<x y < x. Equivalently, there is an element, which we denote x∗

such that y < x if and only if y ≤ x∗. Note that 0̂ is not considered to be completely
join irreducible. We write Jic L for the completely join irreducible elements of L.

Note that for a finite lattice, x ∈ L is join irreducible if and only if it is com-
pletely join-irreducible. However, this is not true in infinite lattices. For example,
consider [0, 1], as an interval in R with the usual order. Every element except 0 is
join-irreducible, but there are no completely join-irreducible elements. This sug-
gests that neither of these notions is necessarily all that useful for general infinite
lattices. However, for the lattices we are interested in, the notion of completely
join-irreducible elements will turn out to be very important.

Let us return to consider the torsion classes of the Kronecker quiver presented
in Example 1.3. Of the torsion classes in the interval isomorphic to a Boolean
lattice, the elements covering the minimum are completely join irreducible, while the
others are not. Among the other torsion classes, all are completely join-irreducible
except the minimum and maximum elements. The unique torsion class which is
join-irreducible but not completely join-irreducible is the one composed of all the
preinjective modules, labelled I in the diagram. It is the join of the (infinite) set
of torsion classes generated by preinjective modules, but it is not the join of any
finite set of torsion classes strictly contained in it.

There are also dual notions of meet irreducible and completely meet irreducible
elements of a lattice.

7. Completely join-irreducible torsion classes

Recall that a module B is called a brick if every non-zero endomorphism of B
is invertible. A brick is necessarily indecomposable, since projection onto a proper
indecomposable summand is a non-invertible endomorphism. Write br A for the
A-modules which are bricks.

In the case of the Kronecker quiver, the bricks are the indecomposable modules
from the preprojective and preinjective components, together with the quasi-simple
module at the bottom of each tube.

In this section, we shall show an important result by Barnard–Carroll–Zhu [BCZ,
Theorem 1.5], that there is a bijection between brA and the completely join irre-
ducible elements of torsA.

The same result holds for tfA, and, by the order-reversing bijection between tfA
and tors A, the same result also holds for the meet-irreducible elements of tors A
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and tf A. For simplicity, we will focus our attention on torsA and its completely
join irreducible elements; everything we prove has analogues in the other settings.

The following lemma says that a torsion class is characterized by the bricks it
contains.

Lemma 7.1. Let T ∈ torsA. Then

T =
∨

B∈T ∩brA

T (B)

Proof. Let us write

U =
∨

B∈T ∩brA

T (B)

Clearly, U ⊆ T . Now suppose that we have some X which is in T but not in U ,
and among such X, choose one of minimal dimension. X is clearly not a brick,
since otherwise it would be contained in U . Thus it has a non-zero non-invertible
endomorphism f . We get a short exact sequence:

0→ f(X)→ X → X/f(X)→ 0

Since X ∈ T , we have X/f(X) ∈ T , and since the dimension of X/f(X) is less
than that of X, it follows that X/f(X) ∈ U .

Similarly, though, since f(X) is also a quotient of X, we know f(X) ∈ T and
thus f(X) ∈ U . We now see that X is the extension of two objects from U , so it is
itself in U , contrary to our assumption. �

We also need the following lemma due to Sota Asai.

Lemma 7.2 ([As, Lemma 1.7(1)]). If X ∈ T (B), then either X � B or Hom(X,B) =
0.

Proof. Suppose that f ∈ Hom(X,B) is non-zero. Since X is filtered by quotients
of B, we can write 0 = X0 ⊆ X1 ⊆ · · · ⊆ Xr = X, with Xi/Xi−1 isomorphic to a
quotient of B. Consider the smallest i such that f |Xi

is non-zero. Since f |Xi−1
= 0,

f induces a map from Xi/Xi−1 to B, and thus from B to B. Since B is a brick,
this map must be surjective, so f |Xi is surjective, and thus f is surjective. �

We can now prove the main result of the section:

Theorem 7.1 ([BCZ, Theorem 1.5]). The map B 7→ T (B) is a bijection from brA
to Jic torsA.

Proof. First of all, we want to show that, for B a brick, T (B) is a completely join
irreducible torsion class. This requires showing that there is a unique maximum
element among all those torsion classes strictly below T (B). We claim that this
torsion class can be described as T (B) ∩ ⊥F (B).

Since B 6∈ ⊥F (B), it is clear that T (B) ∩ ⊥F (B) is a torsion class strictly
contained in T (B). On the other hand, any torsion class strictly contained in
T (B) cannot include any module X admitting a surjective map onto B. Thus, by
Lemma 7.2, any such torsion class must be contained in ⊥B = ⊥F (B). This proves
the claim, thus establishing that T (B) is a completely join irreducible torsion class.

On the other hand, by Lemma 7.1, any torsion class can be written as the join
of T (B) as B runs through all bricks, so this set exhausts the completely join
irreducible torsion classes.
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Finally, we want to check that the map from bricks to torsion classes is injective.
Suppose that T (B) = T (B′), for B and B′ two bricks. B′ cannot be contained in
T (B)∗. Thus there is a surjection from B′ to B by Lemma 7.2. Reversing the rôles
of B′ and B, there is also a surjection from B to B′. Therefore B and B′ must be
isomorphic. �

This theorem is one of the key justifications for the impression that when con-
sidering lattices of torsion classes, it is most appropriate to think in terms of the
complete versions of lattice-theoretic phenomena. As we saw in the example of the
Kronecker quiver, there is a join-irreducible torsion class which is not completely
join-irreducible, namely, the additive hull of the preinjective component. In accor-
dance with Theorem 7.1, it does not correspond to any brick in modA. This raises
the following interesting question:

Question 7.1. Is there any way to extend Theorem 7.1 to characterize the join-
irreducible but not completely join-irreducible elements of torsA?

The proof of the following theorem is dual to the proof of Theorem 7.1.

Theorem 7.2. The map B 7→ F (B) is a bijection from brA to Jic tf A.

Then, applying Theorem 3.1, we deduce:

Corollary 7.1. The map B 7→ ⊥F (B) is a bijection from brA to Mic torsA.

From Theorem 7.1, Corollary 7.1, and their proofs, we can say that associated
to a brick B, there are four torsion classes, arranged as in the following diagram,
where the join of the two torsion classes on the middle layer equals the top torsion
class, and their meet equals the bottom torsion class.

(⊥F (B))∗

T (B)⊥F (B)

T (B)∗

In the diagram, the edges drawn as undashed lines are cover relations in the lat-
tice of torsion classes. The edges drawn using dashed lines are weak poset relations.
In particular, the torsion classes at the endpoints of a dotted line may be equal.
Also, the pair of torsion classes not connected by a line are not comparable in the
lattice of torsion classes. We follow these conventions in subsequent diagrams.

8. Parenthesis: τ-tilting

We include the following section because it makes the link to another topic of
current research related to torsion classes, which was also presented during the
spring school.

A torsion class T is called functorially finite if there is some X ∈ mod A such
that T = Gen(X), where Gen(X) is by definition the collection of quotients of
direct sums of copies of X.

In the Kronecker case, which ones are functorially finite? Exactly those not in the
Boolean lattice. There is no single module which generates the whole preinjective
component and nothing more, and there is no single module which generates any
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tube without in fact being preprojective (and thus generating all the tubes and
more).

Functorially finite torsion classes correspond bijectively to basic support τ -tilting
modules; the bijection from basic support τ -tilting modules to torsion classes is Gen.

Functorially finite torsion classes need not form a lattice. There is nothing that
guarantees that the intersection of two functorially finite torsion classes will be
functorially finite, so in order for them to form a lattice anyway, would have to
be a biggest functorially finite torsion class contained in the intersection, and this
does not always hold. Generally, for hereditary algebras not of finite type, the
functorially finite torsion classes do not form a lattice [IR+, Ri]. Thus, for lattice-
theoretic study, it seems preferable not to restrict to functorially finite torsion
classes.

9. Semidistributivity

In this section we introduce the notion of semidistributivity of a lattice. See
[AN, RST] for more on the subject.

A lattice L is called join semidistributive if x∨y = x∨y′ implies that x∨ (y∧y′)
is also equal to both of them. It is called completely join semidistributive if given
x ∈ L and a set S ⊆ L, such that x ∨ y is equal for all y ∈ S, then x ∨

∧
S is also

equal.
Join semidistributivity and complete join semidistributivity are equivalent for

finite lattices. As usual for us, in the infinite setting, the version which we prefer
is the complete one.

Complete join semidistributivity is equivalent to saying that, given x, z ∈ L,
if we consider {y | x ∨ y = z}, then this set, if it is non-empty, has a minimum
element. When we say “minimum element,” we do not mean only “minimal” (i.e.,
an element such that there is no element strictly below it), we mean an element
which is weakly below all the elements in the set.

Similarly, a lattice is called meet semidistributive if x ∧ y = x ∧ y′ implies that
x ∧ (y ∨ y′) is also equal. It is called completely meet semidistributive if given
x ∈ L and a set S ⊆ L, such that x ∧ y is equal for all y ∈ S, then x ∧

∨
S is also

equal. Equivalently, given x, z ∈ L, if we consider {y | x ∧ y = z}, then this set, if
non-empty, has a maximum element.

A lattice is called semidistributive if it is join semidistributive and meet semidis-
tributive. It is called completely semidistributive if it is completely join semidis-
tributive and completely meet semidistributive.

Complete semidistributivity is the property which we are going to focus on. We
are now going to develop some properties of completely semidistributive lattices.

Proposition 9.1. In any completely join semidistributive lattice L, every cover
y m x has a unique completely join irreducible element j such that x ∨ j = y and
x ∨ j∗ = x.

Proof. Let S = {z | x ∨ z = y}. This set is non-empty, since y ∈ S. Thus, by
complete join semidistributivity, it has a minimum element. Call it j.

Any z < j satisfies that x ∨ z < y, and thus that x ∨ z = x. It follows that any
z < j satisfies that z ≤ x. Therefore, any z < j satisfies z ≤ x ∧ j. Since j 6< x, we
have x ∧ j < j. Thus every element strictly below j is weakly below x ∧ j < j. It
follows that j is completely join irreducible, and j∗ = j ∧ x.



AN INTRODUCTION TO THE LATTICE OF TORSION CLASSES 11

Now suppose that we had some other completely join irreducible element j′ such
that x∨ j′ = y and x∨ j′∗ = x. Since j is the minimum element of S, we must have
j′ > j. But then x ≥ j′∗ ≥ j, which contradicts x ∨ j > x. Thus j is unique. �

Write γ(ymx) for the completely join irreducible element defined in the previous
proposition.

Similarly, in a completely meet semidistributive lattice L, every cover ymx has a
unique completely meet irreducible element m such that m∧y = x and m∗∧y = y.
Write µ(y m x) for this completely meet irreducible element.

Proposition 9.2. In a completely semidistributive lattice L, there are inverse bi-
jections κ and κd:

Jic(L) Mic(L)
κ

κd

such that κ(j) = µ(j m j∗) and κd(m) = γ(m∗ mm).

It is standard to call these two maps κ and κd but different sources disagree as
to which is which.

Proof. Let j be a completely join irreducible element of L, and let m = κ(j) =
µ(j m j∗). We therefore have the following diagram:

m∗

jm

j∗

But now it is clear that κd(m∗ m m) = j, so κd ◦ κ is the identity. The dual
argument shows that κ ◦ κd is the identity, and we have shown that κ and κd are
inverse bijections. �

We now have the following theorem, which shows that the two labellings of the
covers of L differ only by a bijection.

Theorem 9.1. Let L be a completely semidistributive lattice. Then µ(y m x) =
κ(γ(y m x))

Proof. For any y m x, let j = γ(y m x) and m = µ(y m x). We therefore have the
following diagram, from which the result follows.

m∗

ym

x j

j∗

�
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10. Complete semidistributivity of torsA

The fact that lattices of torsion classes are semidistributive was first proved by
Garver and McConville [GM]. For not necessarily finite lattices of torsion classes,
it turns out to be natural to consider complete semidistributivity.

Theorem 10.1 ([DI+, Theorem 3.1(a)]). torsA is completely semidistributive.

Proof. We will prove complete meet semidistributivity. Complete join semidistribu-
tivity follows from the complete meet semidistributivity of tfA, which is established
by a dual argument.

Let X ∈ tors A, and let S ⊆ tors A such that for all Y ∈ tors A, we have
X ∧ Y is equal. Let Z be their common value. Since the meet of torsion classes is
intersection, we have that Z = X ∩ Y for any Y ∈ S.

We want to show that X ∩
∨
S = Z also.

Clearly X ∩
∨
S ≥ Z. To prove the opposite inclusion, let M ∈ X ∩

∨
S be a

minimal-dimensional counter-example.
Since M ∈

∨
S, there is a filtration of M

0 = M0 ⊂M1 · · · ⊂Mr = M

with Mi/Mi−1 ∈ Yi, with Yi ∈ S.
Consider the short exact sequence:

0→M1 →M →M/M1 → 0

Now M/M1 ∈ X ∩
∨
S since M is. Since M1 is non-zero, the dimension of

M/M1 is less than that of M , and thus by our choice of M , we know that M/M1

is not a counter-example. Therefore, M/M1 ∈ Z, so in particular M/M1 ∈ Y1. On
the other hand, we also know that M1 ∈ Y1. Because Y1 is a torsion class, and
therefore closed under extensions, M ∈ Y1. We also know M ∈ X . Therefore M ∈
X ∩Y1 = Z. This contradicts our choice of M , so it must be that X ∩

∨
S = Z. �

11. Consequences of the complete semidistributivity of torsA

As we showed in Section 9, a completely semidistributive lattice has a labelling
of every cover relation ym x by a completely join-irreducible element γ(ym x), and
a labelling of every cover relation by completely meet-irreducible element, µ(ymx)
and these two labellings are related by the maps κ and κd. We would like to
understand what this means in the case of the lattice of torsion classes.

Since we know that the completely join-irreducible torsion classes correspond
to bricks by Theorem 7.1, for Y m X in tors A, define γ̂(Y m X) = B, such that
γ(Y m X ) = T (B). The following proposition defines γ̂(Y m X ) directly.

Proposition 11.1. γ̂(Y m X ) is the unique brick B which is contained in Y but
not in X .

Proof. By the complete semidistributivity of torsA, we know that there is a unique
completely join-irreducible torsion class, γ(Y m X ), such that Y ≥ γ(Y m X ) but
X 6≥ γ(Y m X ). By Theorem 7.1, the completely join-irreducible elements are of
the form T (B), for B a brick. We have that Y ⊇ T (B) and X 6⊇ T (B) iff B ∈ Y
and B 6∈ X . So there is a unique brick contained in Y but not in X , and it is
γ̂(Y m X ). �

Dually, µ(Y m X ) = ⊥F (γ̂(Y m X )).
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Example 11.1 (Type A2). The brick labelling of the covers of tors kQ for Q =
1← 2 is as follows:

〈[10], [11], [01]〉

〈[11], [01]〉

〈[01]〉

0

〈[10]〉

[10]

[11]

[01] [10]

[01]

Example 11.2 (Kronecker quiver). We revisit the Kronecker quiver from Example
1.3. The brick labels of some of the covers were already shown in Figure 2. Inside
the interval that is isomorphic to a Boolean lattice on the set of tubes, one torsion
class covers another if they differ exactly in that there is one tube present in one but
not the other. In this case the brick labelling the cover relation is the quasi-simple
at the bottom of that tube.

12. Algebra quotients and lattice quotients

A surjective map of lattices L � L′ is called a (complete) lattice quotient if it
respects the (complete) lattice operations.

Let φ : A� A/I be an algebra quotient. We can view modA/I as the subcate-
gory of modA consisting of modules annihilated by I. We will be interested in the
map sending T in modA to T ∩modA/I.

Proposition 12.1. T ∩modA/I is a torsion class for A/I.

Proof. It is easy to check that it satisfies the two defining conditions. �

Proposition 12.2 ([DI+, Proposition 5.7(a)]). If (T ,F) is a torsion pair of modA,
then

(T ∩modA/I,F ∩modA/I)

is a torsion pair of modA/I.

Proof. In this proof, when we write C⊥ or ⊥C, we always intend it in the ambient
category modA.

Consider (T ∩modA/I)⊥. Clearly this contains F . Now suppose we have some
module M ∈ modA/I, M 6∈ F . There is therefore some N ∈ T and some non-zero
f ∈ Hom(N,M) 6= 0. Since IM = 0, we must have f(IN) = 0, so f descends to
a map in Hom(N/IN,M). But N/IN ∈ (T ∩ modA/I). This shows that in fact
M 6∈ (T ∩ modA/I)⊥. We conclude that the torsion free class in modA/I which
corresponds to T ∩modA/I is F ∩modA/I. �

For T a torsion class in modA, write φ(T ) for T ∩modA/I.

Proposition 12.3 ([DI+, Proposition 5.7(d)]). If φ is the quotient A� A/I, then
φ is a lattice quotient from torsA to torsA/I.
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Proof. From the definition, it is clear that φ respects the meet operation on torsA.
To see that φ respects join, we recall that∨

T ∈S
T = ⊥

( ⋂
T ∈S
T ⊥
)

and the result now follows from Proposition 12.2. �

We are interested in understanding this lattice quotient better. In particular,
we will address the question of when two torsion classes in modA have the same
image under this quotient. For this purpose, we need the following lemma.

Lemma 12.1. For U ≤ V in torsA, the following are equivalent:

(1) U < V,
(2) U⊥ ∩ V 6= {0},
(3) U⊥ ∩ V contains a brick.

Proof. The implications (3) implies (2) and (2) implies (1) are obvious.
To see that (1) implies (2), let X ∈ V \ U . We have a short exact sequence

0→ tUX → X → X/tUX → 0.

Since X 6∈ U , we know that tUX 6= X, so X/tUX ∈ ⊥U . On the other hand, X ∈ V,
so X/tUX is also. Thus X/tUX witnesses (2).

We now show that (2) implies (3). Suppose that X ∈ U⊥ ∩ V, and suppose that
the dimension of X is minimal among non-zero modules in U⊥ ∩V. If X is a brick,
we are done, so suppose that X is not a brick. It therefore has a non-invertible
non-zero endomorphism f . Let Y = f(X). Now Y is at the same time a quotient
and a submodule of X. Since Y is a quotient of X, we know that Y ∈ V. On the
other hand, since Y is a submodule of X, we know that Y ∈ U⊥. Therefore Y is
an element of U⊥ ∩ V of dimension smaller than X, contradicting our choice of X.
Thus X must have been a brick. �

From Lemma 12.1, the following proposition is immediate:

Proposition 12.4 ([DI+, Theorem 5.15(b)]). For U ≤ V in torsA, φ(U) = φ(V)
if and only if U⊥∩V contains no modules annihilated by I, or equivalently contains
no bricks annihilated by I.

Another way to formulate the proposition is that if U ≤ V, then φ(U) 6= φ(V)
precisely if there is some module in U⊥ ∩ V which is annihilated by I.

Also, we have the following proposition. We write γ̂A and γ̂A/I for the labellings
associated to covers in torsA and torsA/I, respectively.

Proposition 12.5 ([DI+, Theorem 5.15(a)]). If Y mX in torsA and φ(Y)mφ(X )
in torsA/I, then γ̂A(Y m X ) = γ̂A/I(φ(Y) m φ(X )).

Proof. If YmX in torsA, then there is a unique brick from modA in X⊥∩Y, namely
γ̂A(Y m X ). Given that φ(Y) 6= φ(X ), this brick must in fact lie in modA/I. It is
therefore the unique brick in φ(X )⊥ ∩ φ(Y), and thus equals γ̂A/I(Y m X ). �

Example 12.1 (Type A2). Let A = kQ, where Q = 1 ← 2. Let I be the ideal of
A generated by the arrow. A/I is the path algebra of two vertices and no arrows;
tors modA/I is as follows:
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〈[01], [10]〉

〈[01]〉 〈[10]〉

0

[10]

[01] [10]

[01]

We see that it is obtained from the lattice tors A by identifying the two torsion
classes 〈[01], [11]〉 and 〈[01]〉, which differ only in modules which are not in modA/I.
We further see that the labels of the cover relations which remain cover relations in
torsA/I receive the same labels as cover relations in torsA and as cover relations
in torsA/I, consistent with Proposition 12.5.

In the next section, we will see how to combine Proposition 12.4 with the labelling
γ̂. In order to do that, we need another important structural result about torsA.

13. torsA is weakly atomic

A lattice is called weakly atomic if in any interval [u, v] with u < v, there is some
pair of elements x, y with xly. (This property is referred to as arrow-separatedness
in the current version of [DI+] and as cover-separatedness in the current version of
[RST], but they will be updated to reflect the standard terminology.) The interval
[0, 1] in R, with the usual order, is an example of a lattice which is not weakly
atomic (since it has no cover relations at all).

In this section, we will prove the following two theorems.

Theorem 13.1 ([DI+]). torsA is weakly atomic.

Theorem 13.2 ([DI+]). Let φ : A � A/I be an algebra quotient. For U ⊆ V, we
have that φ(U) = φ(V) iff all covers in [U ,V] are labelled by bricks which are not
annihilated by I.

On the way to proving these theorems, we first prove the following proposition,
which can be viewed as a relative version of Theorem 7.1.

Proposition 13.1 ([DI+, Theorem 3.4]). Let U ≤ V be two torsion classes. The
map B 7→ T (B) ∨ U is a bijection from br(U⊥ ∩ V) to Jic[U ,V].

Proof. Let B ∈ br(U⊥ ∩ V). Let Y = U ∨ T (B). Also consider the torsion class
X = Y ∩ ⊥F (B). Since B ∈ U⊥, we have that ⊥F (B) ⊇ U , so X also lies in [U ,V].
Now X is strictly contained in Y since it does not contain B. But any torsion class
containing U which is strictly contained in Y cannot include any module admitting a
surjective map onto B. By Lemma 7.2, any such torsion class is therefore contained
in ⊥B = ⊥F (B). This shows that Y is completely join-irreducible in [U ,V] and
that Y covers X .

We now show that all the completely join irreducible elements of [U ,V] corre-
spond to some brick as above. Any torsion class can be written as the join of the
torsion classes corresponding to the bricks it contains, so any torsion class in [U ,V]
can be written as the join of U and a set of torsion classes of the form T (B) for B
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lying in some subset of U⊥ ∩V. It follows that the only completely join irreducible
elements of [U ,V] are those of the form U ∨ T (B).

Finally, the map from bricks to torsion classes is invertible. If Y is a completely
join irreducible torsion class in [U ,V], with X the unique torsion class in [U ,V]
which it covers, then the brick corresponding to Y is γ̂(Y m X ). �

Based on this, we can now easily establish the following proposition:

Proposition 13.2 ([DI+]). Let U < V be two torsion classes in mod A. Then
there are covers in [U ,V] labelled by each brick in U⊥ ∩ V, and no others.

Note that U⊥ ∩ V is non-empty by Lemma 12.1.

Proof. It is clear that no other brick can appear as a label since if V ≥ Y mX ≥ U ,
and γ̂(Y m X ) = B then B ∈ Y ⊆ V and B ∈ X⊥ ⊆ U⊥.

For the converse direction, if B is a brick in U⊥ ∩ V, then by Proposition 13.1,
there is a completely join irreducible in [U ,V] corresponding to B, and the cover
relation down from it in [U ,V] is labelled by B. �

Theorem 13.1 follows directly from Proposition 13.2, since if U < V, then by
Lemma 12.1, U⊥ ∩ V contains a brick.

Theorem 13.2 follows as well, by combining Proposition 12.4 with Proposition
13.2.

14. A combinatorial application: finite semi-distributive lattices

Consider the following lattice:

This lattice is semidistributive. Suppose that it were isomorphic to torsA for some
A. We see that this lattice has four (completely) join-irreducible elements and four
(completely) meet-irreducible elements, so modA would necessarily have four bricks
by Theorem 7.1. We see that two of the bricks would have to be simple, call them
S1 and S2, and there would be maps as follows, with X and Y being the other two
bricks:

S1

X

Y

S2

There is no such module category. Results of [AP], extending [Ja], can also be used
to construct many examples of finite semidistributive lattices which are not lattices
of torsion classes.

In light of this, it would seem unlikely that representation theory could help
us to understand general finite semidistributive lattices. Nonetheless, it turns out
that it can: there is a kind of combinatorial relaxation of the notion of torsion class
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which allows us to construct exactly all finite semidistributive lattices. This is the
main result of [RST], and I shall not attempt to prove it here, but I will at least
state the result.

Given any finite set, which we will call X, and a reflexive relation → on X,
for a subset C ⊂ X, we can define C⊥ = {Y ∈ X | ∀X ∈ C, X 6→ Y }, and
⊥C = {X | ∀Y ∈ C, X 6→ Y }. Torsion pairs in X are then defined to be pairs of
subsets (T ,F) such that T ⊥ = F and T = ⊥F . We can then define tors(X,→) to
be the set of pairs (T ,F), ordered by inclusion on T . If we allow ourselves to start
with any set X and reflexive relation →, this construction is so general as to be
able to construct any finite lattice, as was discovered by Markowsky [Ma].

Our inspiration for the above construction (though not Markowsky’s original
inspiration) obviously comes from thinking of X as the set of bricks of some module
category, and → as the relation “there exists a non-zero morphism”. It turns out
that by putting additional conditions on →, we can restrict ourselves to obtaining
exactly the finite semidistributive lattices; these relations come from demanding
that → look more like existence of a non-zero morphism, in a sense which I will
now describe.

Starting from a reflexive relation →, define two other relations, � and ↪→. We
define X � Y iff whenever Y → Z then X → Z. Similarly, we define X ↪→ Y iff
whenever Y → Z then X → Z. Again, the intuition from representation theory
is clear: if M and N are A-modules and there is a surjection from M to N then
whenever there is a non-zero map from N to some L, then there is also a non-
zero map from M to L and dually for injections. (Note, though, that if we take
X = brmodA and take → to be “there exists a non-zero morphism”, the relations
� and ↪→ defined as above are not exactly “there exists a surjection” and “there
exists an injection”. See [RST, Section 8] for more details.)

We say that a reflexive relation→ on X is factorizable if it satisfies the following
two conditions:

• For any X,Z ∈X with X → Z, there exists Y ∈X such that

X � Y ↪→ Z.

• Any of X � Y � X or X ↪→ Y � X, or X ↪→ Y ↪→ X imply X = Y .

As is probably clear, the motivating intuition for the first condition is that a non-
zero morphism can be factored as a surjection followed by an injection.

We can now state the main result of [RST]:

Theorem 14.1 ([RST, Theorem 1.2]). Let X be a finite set, and → a reflexive
factorizable relation on X. Them tors(X,→) is a semidistributive lattice, and
every semidistributive lattice arises in this way for a choice of X and → which is
unique up to isomorphism.

I close with the following question:

Question 14.1. Is there a way to interpret any finite semidistributive lattice as
the lattice of torsion classes of a “real” category?

The question is deliberately worded somewhat imprecisely. Another way to
ask the question would be to ask for a representation-theoretic meaning to the
construction of finite semidistributive lattices of [RST].
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